edexcel

Mark Scheme (Results)
Summer 2012

GCE Mechanics M4
(6680) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

earson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032684
All the material in this publication is copyright
© Pearson Education Ltd 2012

June 2012

6680 Mechanics M4

Mark Scheme

Question Number	Scheme	Marks	Notes
(b)	$\begin{aligned} & \begin{aligned} \tan \theta=\frac{\frac{9 V}{7}}{\frac{2 V}{7}} & =\frac{9}{2} \end{aligned} \\ & \begin{aligned} \text { defln angle } & =180^{\circ}-(\theta+\alpha) \\ & =65.7^{\circ}(3 \mathrm{sf}) \end{aligned} \end{aligned}$	M1 A1 DM1 A1 (4) 13	Direction of S after the collision. Condone $\frac{2}{9}$ 77.5° or 12.5° seen or implied Combine their θ and α to find the required angle. e.g. $12.5^{\circ}+\tan ^{-1}\left(\frac{4}{3}\right)$ Accept 66°

Question Number	Scheme	Marks	Notes
2.	With B as origin, $\begin{aligned} & \mathbf{r}_{A}=(6 \sin 30 \mathbf{i}+6 \cos 30 \mathbf{j}) \\ & \quad=(3) \mathbf{i}+(3 \sqrt{3}) \mathbf{j} \\ & \mathbf{r}_{B}=v t \mathbf{i} \quad \text { or } \mathbf{v}_{\mathrm{B}}=v \mathbf{i} \\ & (v-4) \mathbf{i}+(4 \sqrt{3}) \mathbf{j} \\ & \text { or }(v-8 \sin 30) \mathbf{i}+(8 \cos 30) \mathbf{j} \end{aligned}$ When B is $2 \sqrt{3} \mathrm{~km}$ south of A, $\begin{gathered} -3 \sqrt{3}+4 \sqrt{3} t=-2 \sqrt{3} \Rightarrow t=\frac{1}{4} \\ v t-3-4 t=0 \Rightarrow v=16 \end{gathered}$ When B is due east of A, $-3 \sqrt{3}+4 \sqrt{3} t=0 \Rightarrow t=\frac{3}{4}$ i.e. at 12.45 pm then distance $A B=16 \times \frac{3}{4}-3-4 \times \frac{3}{4}=6 \mathrm{~km}$.	M1 A1 B1 M1 A1	Express the original relative positions in component (vector) form one term correct. Both terms correct (substitution of trig values not required). Position of B at time t (seen or implied) Express the relative velocity in component form - one term correct. Both terms correct Compare \mathbf{j} displacement with $\pm 2 \sqrt{3}$ and solve for t cao Equate \mathbf{i} displacement to zero and substitute their value of t. cao Equate \mathbf{j} displacement to zero and solve for t. Any equivalent form for the time. Substitute their $v \& t$ in the \mathbf{i} displacement and evaluate cao. Must be a scalar.

Triangle $A B C$: cosine rule gives $B C^{2}=36+12-2 \times 6 \times 2 \sqrt{3} \cos 30$
Solve for $B C$ and $\angle A B C$
$B C=2 \sqrt{3}, \rightarrow$ triangle is isosceles
$\angle B$ in velocity triangle is 30°
Trig in $\mathrm{rt} \angle$ triangle gives relative velocity $=8 \times \tan 60=8 \sqrt{3}$
$\angle \mathrm{APB}=30^{\circ}$ (angles of a triangle) so triangle is isosceles and
distance $A P=6 \mathrm{~km}$
Using cosine rule or symmetry of isosceles triangle, distance $B P=6 \sqrt{3}$
Time taken $=\frac{6 \sqrt{3}}{8 \sqrt{3}}=\frac{3}{4} \mathrm{hr}$, time is now 12.45

The given information provides us with two triangles - velocities in bold.
Fix A and B follows the path $B P . C$ is the point when B is due South of A, and P when it is due East.

3. (a)

$$
\begin{gathered}
2 m g-T-k v^{2}=2 m a \\
T-m g-k v^{2}=m a
\end{gathered}
$$

Adding, $m g-2 k v^{2}=3 m a$
$\frac{2 g}{3}-\frac{4 k v^{2}}{3 m}=2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}$
$\frac{\mathrm{d}\left(v^{2}\right)}{\mathrm{d} x}+\frac{4 k v^{2}}{3 m}=\frac{2 g}{3} *$
(b)

OR
Separate variables: $\int \frac{3 m}{2 m g-4 k v^{2}} \mathrm{~d} v^{2}=\int 1 \mathrm{~d} x$
$x=-\frac{3 m}{4 k} \ln \left|2 m g-4 k v^{2}\right|(+C)$
$x=-\frac{3 m}{4 k} \ln \left|\frac{2 m g}{2 m g-4 k v^{2}}\right|$
$v^{2}=\frac{m g}{2 k}\left(1-\mathrm{e}^{\frac{-4 k x}{3 m}}\right)$
(6)
(5)

Equation of motion for particle of mass $2 m$ aef
Equation of motion for particle of mass m aef

Eliminate T, substitute for a and rearrange.
Dependent on both previous M marks.
Reach given answer correctly

Use integrating factor to obtain $\frac{d}{d x}\left(v^{2} e^{\frac{4 k x}{3 m}}\right)=\frac{2 g}{3} e^{\frac{4 k x}{3 m}}$ and integrate

Use initial values to evaluate C or as limits in a definite integral and find an expression for v^{2}.
aef.

CF $v^{2}=A e^{-\frac{4 k}{3 m} x}$
PI $v^{2}=b \Rightarrow 0+\frac{4 k}{3 m} b=\frac{2 g}{3} ; \operatorname{GS} v^{2}=A e^{-\frac{4 k}{3 m} x}+\frac{m g}{2 k}$
$x=0, v=0 \Rightarrow A=-\frac{m g}{2 k}$
$v^{2}=\frac{m g}{2 k}\left(1-\mathrm{e}^{\frac{-4 k x}{3 m}}\right)$

When $x=0, T=\frac{4 m g}{3}$

As $x \rightarrow \infty, T \rightarrow \frac{9 m g}{6}=\frac{3 m g}{2}$

Hence, $\frac{4 m g}{3} \leq T<\frac{3 m g}{2}$. *

Substitute $v=0$ in the initial equations and solve for T

For large $x, v^{2} \rightarrow \frac{m g}{2 k}$.
Substitute in the initial equations and solve for T cwo - answer is given.
4.(a)

OR
(b)
$v^{2}=5^{2}+20^{2}-2 \times 5 \times 20 \cos 124.818 \ldots$
OR $v=\frac{20}{\sin 45} \times \sin 124.8$
OR $v=5 \cos 45+20 \cos \theta$
$v=23.22$
$t=\frac{15}{23.22}=0.646 \mathrm{~h}=39 \mathrm{~min}($ nearest min$)$
(c)

Due N, (since current affects both equally)
(d) $t=\frac{4}{20}=0.2 \mathrm{~h}=12 \mathrm{~min}$

B1
B1

Use a vector triangle to find θ.
Condone the $5 \mathrm{~ms}^{-1}$ in the wrong direction.
Correct equation for θ
Use their angle correctly in their triangle to find the bearing.
Accept alternative forms e.g. N 35 E
45° rt angle triangle
t substitution leading to correct equation in t, use of $R \cos (\theta+\alpha)$
o.e.

Complete method to find v

Or better $\left(\frac{5 \sqrt{2}+5 \sqrt{62}}{2}\right)$
$\frac{15}{\text { their } v}$
The Q specifies "nearest minute"
cao
cso
5.
(a)

$$
V=-W a \cos 2 \theta+\frac{1}{2} W\{3 a-(L-6 a \cos \theta-4 a)\}
$$

$\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=W a(-3 \cos \theta+4 \cos 2 \theta)$
$\theta=0: \frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=W a>0 \Rightarrow$ stable
$\theta=\cos ^{-1} \frac{3}{4}: \frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=-\frac{7 W a}{4}<0 \Rightarrow$ unstable
$=-W a \cos 2 \theta+3 W a \cos \theta+\left(\frac{7 W a}{2}-\frac{W L}{2}\right)$
$=W a(3 \cos \theta-\cos 2 \theta)+$ constant *
$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=W a(-3 \sin \theta+2 \sin 2 \theta)$
For equilibrium, $W a(-3 \sin \theta+2 \sin 2 \theta)=0$
$\sin \theta(4 \cos \theta-3)=0$
$\Rightarrow \theta=0$ or $\theta=\cos ^{-1}\left(\frac{3}{4}\right)$

GPE of rod e.g. $-W a \cos 2 \theta$
GPE of the particle e.g. $\frac{1}{2} W\{3 a-(L-6 a \cos \theta-4 a)\}$
Condone 3 a term missing.
Correct expression including the 3 a (unless in the GPE for the rod)
Accept aef e.g. $\sqrt{18 a^{2}(1+\cos 2 \theta)}$ for $6 a \cos \theta$

Obtain the given answer correctly
(4)

Differentiate the given V wrt θ correct

Set their derivative $=0$
First answer
Second answer - ignore $\theta=-\cos ^{-1}\left(\frac{3}{4}\right) \cdot 0.72$ rads or better
Obtain the second derivative of V and substitute one of their values for θ
Correct working and conclusion for one value

Correct working and reasoning for the second.
ISW for work on $-\cos ^{-1}\left(\frac{3}{4}\right)$
6.(a)

$$
\begin{aligned}
& T_{1}=m g+T_{2} \\
& \frac{3 m g e}{a}=m g+\frac{m g(2 a-e)}{a} \\
& \quad e=\frac{3 a}{4} \Rightarrow A P=\frac{7 a}{4} *
\end{aligned}
$$

(b)
(c)
$m g+T_{2}-T_{1}-m k v=m$

For a damped oscillation, $k^{2}<\frac{16 g}{a}$
$m g+\frac{m g\left(\frac{5}{4} a-x\right)}{a}-\frac{3 m g\left(\frac{3}{4} a+x\right)}{a}-m k v=m$
$k x \&+\frac{4 g}{a} x=0$
i.e. $k<4 \sqrt{\frac{g}{a}}$

No resultant force and use of Hooke's law
Correct equation in one unknown
$\frac{3 m g(A P-a)}{a}=m g+\frac{m g(3 a-A P)}{a}, 3 A P-3 a=a+3 a-A P$
Derive given result correctly.

Condone verification for $3 / 3$

Equation of motion - requires all terms but condone sign errors.
o.e. Correct equation in $T_{1} \& T_{2}$.

Use Hooke's law with extensions of the form $k a \pm x$
o.e. Correct unsimplified

Given answer derived correctly

AE will have complex roots
Correctly substituted inequality
Only (Q gives $\mathrm{k}>0)-4 \sqrt{\frac{g}{a}}<k<4 \sqrt{\frac{g}{a}}$ is A0.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA032684 Summer 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

